Module 8: Water-borne diseases

Key messages in Module 8

- Water-borne diseases are mostly faecalorally transmitted diseases
- Climate can influence waterborne diseases in different ways depending on the local environment & population
- Mitigation & adaptation will be enhanced by understanding the ecology of pathogens

Module 8 outline

Water quantity & quality

Water quantity & quality issues

Examples of current vulnerabilities of freshwater resources

54% of India Faces High to **Extremely** High Water Stress

6

Water-related diseases

Category	Transmission	Disease examples		
Water-borne	Ingestion of water contaminated by human or animal faeces or urine containing pathogenic bacteria, viruses or parasites	Gastroenteritis, enteric hepatitis, amoebic & bacillary dysentery, cholera, leptospirosis, poliomyelitis, typhoid/paratyphoid fever		
Water-washed	Skin, ear or eye contact with contaminated water & poor personal hygiene	Conjunctivitis, trachoma, intestinal helminth infections, leprosy, scabies		
Water-aerosol disease	Inhalation of water aerosol containing pathogen	Legionellosis, phiesteria		
Water-based	Parasitical worm infections (parasites found in intermediate organisms living in water)	Dracunculiasis, schistosomiasis, (tricho)bilharziasis		
Water-related arthropod vector	Insect vectors breeding in water or biting near water	Dengue, lymphatic filariasis, malaria, onchocerciacis, trypanosomiasis, yellow fever		

Diarrhoeal disease pathways: Fecal-oral transmission

Source: Prüss-Üstün et al. (2008) 8

Burden of diarrhoeal diseases

Burden of water-borne disease

- 1.8 million deaths 4 million cases- in 2004 due to gastroenteritis (WHO)
- 88% due to unsafe water & poor sanitation

Burden of diarrhoeal diseases related to WSH

In 2016, water, sanitation and hygiene was responsible for 829 000 annual deaths from diarrhoea and 1.9% of the global burden of disease (DALYs)

Improvements related to drinking-water, sanitation, hygiene and water resource management could result in the reduction of almost 10% of total burden of disease worldwide

DALYs due to Diarrhoeal Diseases, India

In addition to diarrhoea, an important share of the following diseases could be prevented if adequate water quality and quantity, sanitation facilities, hygiene behaviour, as well as water resource management interventions were implemented:

- Malnutrition
- Intestinal nematode infections
- Lymphatic filariasis
- Trachoma
- Schistosomiasis
- Malaria
- Other infectious diseases

Diseases with largest water, sanitation & hygiene contribution (% global disease burden) (2002)

Non-environmental fraction

Source: Prüss-Üstün et al. (2008)14

No. of additional deaths from diarrhoea in 0-15 years of age, worldwide

Source: Kovats & Lloyd (WHO) (2014) 15

How climate & weather affects water-borne disease

How climate influences waterborne disease trends

Local temperature	 Replication in the environment or associated with food products Persistence 				
Local rainfall	 Loading into the environment (contamination) Increased concentration of contaminants (drought) 				
Changes in hydrologic cycle	 Increased drought Increased storm intensity 				
Change in frequency of 'extreme events'	 Hurricanes Ocean-atmosphere oscillations: ENSO, IOD, others 				
Sea level rise	 Influx of marine pathogens Flooding (storm surge), contamination, loss of infrastructure 				

How climate & weather affects food- & waterborne disease: Seasons

Seasonal trends in Rotavirus infections

Source: Patel et al. (2013) 19

Seasonal patterns of Salmonellosis

Source: Kovats et al. (2004) 20

How climate & weather affects food- & water-borne disease: Temperature

Annual temperature & reported diarrhoeal disease, Pacific Islands (1986 – 1994)

3% increase of diarrhoea for each 1°C increase in the previous month

Source: Singh et al. (2001) 22

Correlation of temperature & water-borne diseases in Lao PDR Source: Fengthong et al. (2005)

How climate & weather affects food- & water-borne disease: Precipitation

Severe 1997-1998 El Niño episode & diarrhoeal disease incidence in children ≥60 months of age in Lima Peru, 1995-1998

25

Local rainfall influences levels of pathogens in water & exposure risk to humans

- Run-off
- Flooding
- Drought

Flooding: Risk factors

- Direct contact with contaminated water
 - Skin
 - Respiratory
 - Ear & eye infections
- Ingestion of contaminated water (wells etc.)
 - Gastroenteritis
- Insufficient water treatment (i.e. problem at the tap)
- Additional secondary spread

Climate change & flooding

(B)

1980

2000

BCC-CSM1.1

----- MPI-ESM-LR

CSIRO-Mk3.6.0

2020

2040

- GFDL-ESM2G

- MRI-CGCM3

— CCCma-CanESM2

2060

Maximum

- Mean

RCP6.0

RCP8.5

2080

— CMCC-CM

----- INM-CM4

— NCC-NorESM1-M

2100

RCP4.5

CNRM-CM5

MIROC5

RCP2.6

+1 Std Dev

– –1 Std Dev

Minimum

Extreme precipitation & waterborne disease outbreaks

29

E.g. Walkerton (Canada) rainfall, 2000

E.g. Walkerton (Canada) outbreak Illness onset dates & precipitation

Source: Howard (2004) 31

Cryptosporidiosis & precipitation

Rainfall, run-off & pathogen contamination

- Building evidence for the association between diarrheal disease & increased precipitation, especially with heavy rainfall events
- In addition, several studies note increased pathogen loads related to floods, run-off, & heavy precipitation including:
 - Enteric viruses (e.g. enteroviruses, noroviruses, adenoviruses)
 - Protozoan parasites (e.g. Cryptosporidium, Giardia, others)
 - Enteric bacteria (e.g. Salmonella, Campylobacter, E. coli, fecal indicator bacteria)

Drought effects on water quality Correlation between storage level & supplies with water quality issues

Drought & Shigellosis

Source: Modified from NICD data, Mongolia (2009) 35

How climate & weather affects food- & water-borne disease: Sea level rise

Source: Hallegatte et al. (2013) 37

India: Vulnerability to Sea Level rise

Vibrio spp.

- Vibrio are commonly estuarine & marine bacteria & include at least 12 known pathogens to humans
 - V. vulnificus
 - V. parahaemolyticus
 - V. cholerae
- In general, this group replicates easily in natural waters & biota, especially under high temperatures

- Directly related to increasing water temperatures

Cholera: South Asia

- Yearly epidemics correspond to natural environmental cycles & contamination
 - Influx of estuarine water
 - Plankton blooms
 - Monsoons
 - Warm temperatures
- Cycles can be modelled for year to year changes in outbreaks

Bay of Bengal: Sea surface height & sea surface temperature

Jan

Feb

low

Mar

Jul

Apr

May

Jul

Aug

Apr

May

Aug

Sep

low

Dec

high

в 25 20 Sea Surface Anomaly (cm) 10 5 0 -5 -10 -15 -20 Zá

Source: Lobitz et al. (2000) 41

high

Bay of Bengal: Cholera & sea surface height

Source: Lobitz et al. (2000) 42

Measures to address water- & food-borne diseases associated with climate change

Water-borne disease: summary

- Climate projections for increased warming & increased extreme events suggest waterborne diseases may increase
- Mitigation & adaptation will be enhanced by understanding the ecology of pathogens
 - What underlying factors provide the link to climate?
 - How do changing landscapes affect disease incidence under changing climate conditions?

The water tower of Asia

The water tower of Asia

River	Area sq km	Mean discharge (m³/s)	% of Glacier melt in river flow	Population x 1,000	Population density	Water per person m ³ /year
Indus	1,081,718	5,533	44.8	178,483	165	830
Ganges	1,016,124	18,691	9.1	407,466	401	~2500
Brahma	651,335	19,824	12.3	118,543	182	~2500
Irrawaddy	413,710	13,565	small	33,097	80	18,614
Salween	271,914	1,494	8.8	5,982	22	23,796
Mekong	805,604	11,048	6.6	57,198	71	8,934
Yangtze	1,722,193	34,000	18.5	368,549	214	2,265
Yellow	944,970	1,365	1.3	147,415	156	361
Tarim	1,152,448		40.2	8,067	7	754
Total				1,324,800		

Source: ICIMOD (2008) 46

Measures to address water- & food-borne diseases

- The effects of climate change on water & foodborne diseases can be mitigated
 - Focus on public health response
 - Focus on basic infrastructure
 - Increased attention to treatment options
- We have the tools to address problems & prevent disease
- Understanding how climate may increase risk can be used to prioritize adaptation or rapid response measures

What we covered in Module 8

Key messages in Module 8

- Waterborne diseases are mostly transmitted by faecal-orally transmitted diseases
- Climate can influence waterborne diseases in different ways depending on the local environment & population
- Mitigation & adaptation will be enhanced by understanding the ecology of pathogens